Effects of grazing on N$_2$O production potential and abundance of nitrifying and denitrifying microbial communities in meadow-steppe grassland in northern China

Lei Zhonga,b, Rui Dua, Kai Dinga, Xiaoming Kangc, Frank Yonghong Lib, Saman Bowatteb, Coby J. Hoogendoornb, Yanfen Wanga,d, Yichao Ruia, Lili Jianga, Shiping Wange

aUniversity of Chinese Academy of Sciences, Beijing 100049, China
bAgResearch Grasslands Research Centre, Private Bag 10008, Palmerston North 4442, New Zealand
cInstitute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
dResearch Network of Global Change Biology, Beijing Institutes of Life Science, The Chinese Academy of Sciences, Beijing, China
eLaboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China

A R T I C L E I N F O

Article history:
Received 1 August 2013
Received in revised form 2 October 2013
Accepted 11 October 2013
Available online 30 October 2013

Keywords:
Acetylene inhibition method
Arid
Microbial functional groups
Soil moisture
Q-PCR
Structural equation modeling

A B S T R A C T

Purpose: The aim of this study was to investigate the effects of cattle grazing on the nitrous oxide (N$_2$O) production potential from meadow-steppe grassland soil in northern China, and the relationship between cattle grazing and the abundance of different functional microbial genes for potential of N$_2$O emissions.

Materials and methods: We collected soil samples at a depth of 0–20 cm over six times during two plant growing seasons in 2011 and 2012 on a native Leymus chinensis grassland. At each of the six sampling occasions, soil samples were taken from three pairs of the cattle grazed vs. ungrazed plots. We then determined (1) the soil moisture, pH, total carbon and nitrogen, and mineral N (NH$_4^+$ and NO$_3^-$) content, (2) the potential rates of N$_2$O production from nitrification (N$_{N_2O}$) and from denitrification (D$_{N_2O}$ and D$_{N_2}$) using the acetylene inhibition method, and (3) the abundance of the amoA (ammonia monooxygenase) gene of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), the narG (nitrate reductase) gene and nosZ (nitrous oxide reductase) gene using quantitative real-time PCR (qPCR). The relationship among the changes in the N$_2$O production potential rates, the abundance of microbial functional groups and the soil environment was analyzed using mix effects modeling and structural equation modeling.

Results and discussion: The AOA, AOB, narG, nosZ genes and the potential N$_2$O production rate all varied significantly with the season ($P < 0.01$). Grazing induced an overall reduction in soil moisture ($P < 0.05$) and soil total N in 2012 ($P < 0.05$), and a significant increase in the abundance of AOB genes ($P < 0.05$); but no significant difference between grazing treatments was found on the abundance of AOA, narG and nosZ genes, or on the N$_{N_2O}$ and D$_{N_2O}$. Approximately 80% of the variation in N$_{N_2O}$ could be explained by the abundance of AOA and AOB genes ($P < 0.0001$), which in turn was explained by soil NH$_4^+$ content and soil moisture; The abundance of narG gene, along with total C, NO$_3^-$ content and soil moisture, explained 97% variation in the D$_{N_2}$ ($P < 0.0001$). The abundance of narG gene was related to the production of N gases from denitrification (D$_{N_2O}$ and D$_{N_2}$), but not the D$_{N_2O}$. Soil moisture was the best predictor for D$_{N_2O}$.

Conclusions: The abundance of amoA and narG genes are good indicators for the potential nitrification and denitrification rates in the meadow steppe grassland. Soil moisture is the most important factor controlling the N$_2$O emission potential in the meadow-steppe grassland. The grassland soils protected from animal grazing or that under a moderate grazing for five years did not show a significant difference in potential N$_2$O emissions. Our results suggest that grazing induced grassland degradation may not necessarily be associated with a reduction in N$_2$O emissions as reported in other semiarid grasslands in a more arid environment.

© 2013 Elsevier Ltd. All rights reserved.

* Corresponding author. University of Chinese Academy of Sciences, Beijing 100049, China. Tel.: +86 10 88256066; fax: +86 10 88256079.
E-mail address: yfwang@ucas.ac.cn (Y. Wang).

0038-0717/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.soilbio.2013.10.028
1. Introduction

Nitrous oxide (N$_2$O) emissions contribute to global warming (IPCC, 2007) and to the catalytic depletion of the ozone layer (Ravishankara et al., 2009). N$_2$O is mainly produced in soils by microbial nitrification which converts the ammonium (NH$_4$) to nitrite (NO$_2$), and then to nitrate (NO$_3$), and by microbial denitrification that reduces nitrogen oxides such as NO$_3$ to nitrogen gases (N$_2$O and N$_2$) (Zumft, 1997). Temperate grasslands cover 11% of the earth's terrestrial surface (Sala et al., 2001), and are mostly used as grazing land for animal production. Animal grazing removes herbage which reduces vegetation cover and alters soil water and energy balance (Leriche et al., 2001), increases soil compaction or reduces soil aeration by trampling (Oenema et al., 2007; Houldbrooke et al., 2008), and changes the quantity and quality of soil organic matter and mineral N content by the deposition of dung and urine (Saggar et al., 2004). All of these effects have been shown to influence N$_2$O emissions and N$_2$O emissions from temperate grazed-grasslands are estimated to be more than 10% of the global budget (Oenema et al., 2007).

An increasing number of studies have been conducted in grasslands to quantify N$_2$O production under different management (Du et al., 2006; Groffman et al., 1993; Shan et al., 2011; Xu et al., 2008; Le Roux et al., 2007). These studies found that, for most of managed temperate grassland under humid climate, N$_2$O was predominantly produced from denitrification (de Klein and Van Logtestijn, 1994; Wragie et al., 2001; Saggar et al., 2004, 2007a); and animal grazing would increase N$_2$O emission by enhanced N cycling rate (e.g.; Hyde et al., 2006; Liebig et al., 2006; Luo et al., 2008). While for most of the arid and semiarid grasslands, the N$_2$O was predominantly produced by microbial nitrification (Cookson et al., 2006; Verchot et al., 2002; Xu et al., 2008), animal grazing generally decreased N$_2$O emissions by the grazing-induced reduction in soil organic matter and soil moisture (Pethetplace et al., 2001; Wang et al., 2005). These studies attribute the observed changes in N$_2$O emissions to the changes in soil conditions and their effects on carbon (C) and N cycling, and had no explicit consideration of the role that microorganisms played in N$_2$O production. This picture has changed recently, with increasingly more research to investigate the abundances of different microbial functional genes and their relationship with N$_2$O production, as well as their changes under different grassland management (Di et al., 2009; Philippot et al., 2009). Le Roux et al. (2007) reported that grazing led to an increase in the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) genes and therefore the potential for nitrification in semi-natural grassland. Wakelin et al. (2009) also indicated that pasture management did not affect the abundance of amoA and narG gene. So far as the preceding literature, no consistent relationships were found between the abundance of functional microbial genes and the potential of nitrification and denitrification, nor between animal grazing effects and the abundance and activity of denitrifying microbes (functional genes for denitrification) and their activities (Attard et al., 2011; Chroakova et al., 2009; Philippot et al., 2009).

Furthermore, most studies focused on one process of the N cycle, i.e., either on nitrification or on denitrification (Chroakova et al., 2009; Di et al., 2009; Philippot et al., 2009), and so was unable to completely describe the relations between the overall N$_2$O production potential from grassland soils, the microbial functional groups involved, and their changes under grazing.

In this study, we report the effects of animal grazing on N$_2$O production processes from native *Leymus chinensis* meadow-steppe grassland on the Hulunber high plain in North Eastern China. The *L. chinensis* grassland covers an area of about 90,000 km2 and is one of the most well-known rangelands in the east part of the Eurasian steppe (Wang, 2004). However, grazing-induced grassland degradation has profoundly affected the grassland ecosystems, and led to significant depletion in soil organic matter and biomass production (Li et al., 1997, 2008). The effects of grazing on this ecosystem have been increasingly studied in order to support sustainable land management for both animal production and environmental impacts. Previous studies cover the impact of animal grazing on plant species diversity and productivity (Zhou et al., 2006; Gao et al., 2012) and soil quality (Han et al., 2008). However, no information is available on N$_2$O emissions and abundance of functional microbial genes.

The aim of the present study was to determine the impact of animal grazing on the N$_2$O production potential over the plant growing season (May—September) and abundance of microbial functional genes related to N$_2$O emissions in the *L. chinensis* meadow-steppe grassland soil. This grassland is under a semi-arid climate, though the rainfall in its distribution area is relatively higher than that of the typical steppe or desert steppe grasslands (Wang et al., 1985). We hypothesized that animal grazing would reduce the abundance and activities of nitrifying and denitrifying microbial genes and reduce the N$_2$O production potential from this meadow-steppe grassland soil, and that the reduction would be associated with the grazing-induced decrease in soil moisture, plant production and soil C and N content in this semi-arid environment.

2. Materials and methods

2.1. Experimental grassland

The experiment was conducted in the cattle grazing enclosure of the Hulunber Grassland Ecosystem Research Station of the Chinese Academy of Agricultural Sciences (49°22'N, 120°02'E, 600 m a.s.l.) in Inner Mongolia, China. The climate in this region is semi-arid. Annual mean precipitation is 400 mm with a large inter-annual variation from 150 to 550 mm, falling mainly during June–August which coincides with the plant growing season. Annual mean air temperature is 0 °C, with a monthly mean temperature of −26 °C in the coldest month (January) and 21 °C in the warmest month (July) (Chen et al., 2012). The region has a winter period of nearly six months, from October to March, and a short spring (April/May) and autumn (August/September). The frost-free period for plant growth spans about 105 days, from early May to early September (Wang, 2004).

The native meadow-steppe grassland is dominated by *L. chinensis*. Other prevalent grasses include *Stipa baicalensis*, *Cleistogenes squarrosum* and *Carex dariousula*. The average annual grass production (net herbage accumulation) is about 2500 kg dry matter (DM) ha$^{-1}$, with a large variation of 1500–4000 kg DM ha$^{-1}$ (Chen et al., 2012). The soil is a dark chestnut soil (or Calciorthic Aridisol in the US soil taxonomy classification system) with a pH of 7.1, and a soil bulk density of 1.27 g cm$^{-3}$.

The experimental grassland was on flat areas and enclosure was established in 2006 to investigate the effects of cattle grazing on grassland ecosystems, including multiple grazing intensities. The native grassland was historically the extensive rangeland of nomadic herders and was used with a very low stocking intensity. The stocking intensity on the grassland began to increase some four or five decades ago, and was assessed as being at a 'moderate to high' level at the time of setting up the experimental enclosure in 2006 (Wei et al., 2011). After the establishment of the enclosure, the grassland in the control paddock has remained ungrazed. That is, the grasses grow, senesce and litter naturally, with all plant material returned to soil (except a small fraction of the grasses consumed by native herbivores such as rodents and insects); while...
the grassland adjacent to the control paddock has been grazed at a moderate stocking intensity (about 0.34 cattle ha\(^{-1}\)) during the plant growing season from May to October (Wei et al., 2011). Our study compares the soils from the fenced control area that had been ungrazed for 5–6 years and that from the area grazed with moderate stocking intensity. By 2011 when soil sampling commenced, the grasslands showed a visible difference between the two areas, with much taller grass and standing dead and more little accumulation on soil surface in the non-grazed than in the grazed area.

2.2. Soil sampling and vegetation description

Soil samples were collected three times in each of two years: in spring (27 May), summer (27 July) and in autumn (27 September) in both 2011 and 2012. Three pairs of soil sampling plots were determined and marked as permanent soil sampling areas for repeated sampling and measurements on the both sides of the fence that divided the grassland into grazed (control paddock) and moderately grazed areas. Each sampling plot was approximately 5 × 5 m\(^2\) and 10 m distant from the fence to avoid edge effects. The sampling in each time includes collecting three pairs of soil samples from the three grazed and three non-grazed plots. Soil was sampled at a depth of 20 cm, using a 7 cm diameter steel core. Five soil cores were randomly collected within each sampling plot and bulked together as a plot sample. Soil samples were then passed through a 2 mm sieve and stored at 4 °C in the laboratory until further use. Sub samples of fresh soil were stored at −20 °C for DNA extraction. Soil bulk density was determined once in July 2011 at the same time of soil sampling in summer (27 July) each year. Plant height was measured, and plant standing biomass was harvested, oven-dried at 65 °C for 48 h, and weighed for each species, using six quadrats of 1 m\(^2\) in each sampling plot (Li et al., 2008).

2.3. Chemical and microbial functional gene analyses

Soil NH\(_4\)\(^+\) and NO\(_3\)\(^-\) concentrations were determined in 2 M KCl extracts using a Lachat Quikchem Automated Ion Analyzer (FIA Star 5010 Analyzer; Tecator). Gravimetric soil moisture content was determined by oven-drying at 105 °C for 24 h. Total soil C content was analyzed using the H\(_2\)SO\(_4\)–K\(_2\)Cr\(_2\)O\(_7\) oxidation method (Nelson et al., 1996). Total N content was analyzed using Kjeldahl acid-digestion method with an auto-analyzer (Foss Inc., Hillerød, Sweden). The DNA was extracted from 0.3 g of frozen soil using MoBio Powersoil™ DNA Isolation Kit (San Diego, CA, USA) following the manufactures instructions and stored at −80 °C until further use. The abundance of ammonia monooxygenase A gene of ammonia-oxidizing archaea (amoA-AOA), ammonia-oxidizing bacteria (amoA-AOB), bacterial narG and nosZ genes were quantified in triplicate by real-time PCR using an iCycler IQ (Biorad). The real time PCR mixture contained 2 ng of undiluted soil DNA, 5 pmol of primers (Table 1) and 2 × SYBR Green iCycler IQ mixture (Bio-Rad, US) in a total of 25 ml reaction volume.

2.4. Incubation experiment to measure \(\text{N}_2\text{O}\) emission potential from nitrification and denitrification

The incubation experiment was performed in a 250 ml flask with 40 g (dry weight) of sieved field moist soil. The headspace inside the flask was set with three acetylene (C\(_2\)H\(_2\)) partial pressures: 0, 10 Pa and 10 kPa, each with three replicates (Yoshinari, 1993). Each flask was sealed with an airtight rubber lid and incubated at similar temperatures and moisture levels as recorded in the field. Gas samples of 1 ml from the headspace of the flasks were taken at 0, 1 and 7 days, and analyzed for \(\text{N}_2\text{O}\) concentration using a gas chromatograph (Agilent 7890 GC USA) equipped with a 63Ni-electron capture detector operating at column.

The \(\text{N}_2\text{O}\) production from nitrification was estimated by the headspace \(\text{N}_2\text{O}\) concentration difference between flasks without C\(_2\)H\(_2\) and that with 10 Pa C\(_2\)H\(_2\). The \(\text{N}_2\text{O}\) evolved by denitrification was estimated by the headspace \(\text{N}_2\text{O}\) concentration in the flasks with C\(_2\)H\(_2\) at 10 Pa. The 10 Pa C\(_2\)H\(_2\) concentration inhibits the reduction of \(\text{N}_2\text{O}\) to \(\text{N}_2\) (Klemedtsson et al., 1997). Each flask was sealed with an airtight rubber lid and incubated at similar temperatures and moisture levels as recorded in the field. Gas samples of 1 ml from the headspace of the flasks were taken at 0, 1 and 7 days, and analyzed for \(\text{N}_2\text{O}\) concentration using a gas chromatograph (Agilent 7890 GC USA) equipped with a 63Ni-electron capture detector operating at column.

Table 1

<table>
<thead>
<tr>
<th>Functional gene</th>
<th>Enzyme</th>
<th>Anneling time and temperature</th>
<th>Elongation time and temperature</th>
<th>Primer</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial amoA</td>
<td>Ammonia monooxygenase</td>
<td>55 °C, 30 s</td>
<td>72 °C, 45 s</td>
<td>amoA1F,</td>
<td>GGG GTT TCT ACT GGT GGT</td>
<td>Rotthauwe et al., 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>amoA2R</td>
<td>/CCC CTC KGS AAA GCC TTC TTC</td>
<td></td>
</tr>
<tr>
<td>Archaeal amoA</td>
<td>Ammonia monooxygenase</td>
<td>55 °C, 30 s</td>
<td>72 °C, 45 s</td>
<td>CrenamoA23F,</td>
<td>ATGGTGTTGGTGWAGGC</td>
<td>Francis et al., 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CrenamoA168R</td>
<td>/GCCATCCTACGTGATGGTCA</td>
<td></td>
</tr>
<tr>
<td>narG</td>
<td>Nitrate reductase</td>
<td>58 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>narGG-F,</td>
<td>TCG CCS ATY CCG GCS AGTC</td>
<td>Bru et al., 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>narGG-R</td>
<td>/GAG TTG TAC CAG TCR GCS GAY TCS G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrous oxide reductase</td>
<td>60 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>nosZ2F,</td>
<td>CCC GAC AAS AAG GTS M55 GT</td>
<td>Henry et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nosZ2R</td>
<td>/CAK RTG CAK SGC RTG GCA GAA</td>
<td></td>
</tr>
</tbody>
</table>

a Touch down starting at 63 °C temperature decrease of 1 °C per cycle for 6 cycles.

b Touch down starting at 65 °C temperature decrease of 1 °C per cycle for 6 cycles.

2.5. Statistical analysis

The statistical analysis employed a repeated measure linear mixed effects model using the packages ‘nlme’ and ‘predictmeans’ in R package version 3.1 (Pinheiro et al., 2007). Data were analyzed using a model where the sampling plot was considered as a random effect and the grazing treatment, sampling time (combination of year and month) and their interaction as fixed effects. The correlation structure within each PLOT along the time was compound symmetry. The data for abundance of amoA-AOB and the \(\text{N}_2\text{O}\) production potential were log transformed to satisfy the requirement for normality.

Structural equation modeling (SEM) was performed using Amos 20°© (Amos Development Corporation, Crawfordville, FL, USA) with all the data to explore the causal links between soil physical, chemical and biological variables and \(\text{N}_2\text{O}\) production potentials. The model considered soil moisture (SM), soil temperature (ST), total C, total N, NH\(_4\)\(^+\), NO\(_3\)\(^-\), the abundance of amoA-AOA, amoA-AOB, narG and nosZ genes and \(\text{N}_2\text{O}\) production potentials from nitrification (\(\text{N}_2\text{O}\)) and \(\text{N}_2\text{O}\) production potential...
(\(D_{N_2}\)). Since SEM was most appropriate for datasets with large sample sizes (McCune et al., 2002) and the sample size (\(n = 36\)) in our experiment was low relative to the number of variables in this modeling, we also did another SEM for a better fit of the model to the data by aggregating all the soil parameters (SM, ST, C and N) into one variable “soil conditions” using principal component analysis (SPSS 14.0, Grace and Jutila, 1999). Small sample sizes generally result in conservative fit estimates (Shipley, 2000). In SEM, a \(\chi^2\) test is used to determine whether the covariance structures implied by the model adequately fit the actual covariance structures of the data. A non-significant \(\chi^2\) test \((P > 0.05)\) indicates adequate model fit. The coefficients of each path as the calculated standardized coefficients were determined using the analysis of correlation matrices. Paths in this model were considered significant with a \(P\)-value \(<0.05\). These coefficients indicate by how many standard deviations the effect variable would change if the causal variable was changed by one standard deviation (Cantarel et al., 2012; Petersen et al., 2012).

3. Results

3.1. Environmental conditions

Annual precipitation in 2011 (178 mm) and 2012 (210 mm) was both lower than the long term average (400 mm) at the experimental site. Monthly precipitation in May and July was higher in 2011 than 2012, but that in September was lower in 2011 than 2012 (Fig. 1). Average monthly air temperature was similar between the two years, ranging from –30 (January) to 20 °C (July). The average air temperature (Fig. 1) and soil temperature at 10 cm at the sampling months were both slightly higher in 2012 than 2011. The average soil temperature in May, July and September was 11, 20 and 10 °C in 2011, and 12, 21 and 12 °C in 2012.

The average plant standing biomass measured at the time of plant peak biomass (27th July) was 2880 and 2680 kg DM ha\(^{-1}\), respectively in 2011 and 2012 in the un-grazed plots, and 470 and 320 kg DM ha\(^{-1}\), respectively in 2011 and 2012 in the grazed plots.

3.2. Soil analysis

The soil moisture content varied from 7% to 34% (Fig. 2A) during the two year experimental period and showed significant interaction with time and grazing treatment \((P = 0.03)\). Soil moisture content was significantly lower for the grazed treatment in May 2011 \((P = 0.0002)\), July 2011 \((P = 0.006)\), May 2012 \((P = 0.0002)\) and in September 2012 \((P = 0.005)\).

The total carbon (TC) content of soil was significantly lower \((P = 0.01)\) in the grazed than un-grazed treatment (33.15 and 36.90 g kg\(^{-1}\) respectively), and varied significantly with time \((P < 0.0001)\) (Fig. 2B), but no interaction was observed between grazing treatment and time. In contrast, there was a strong interaction between grazing treatment and time for soil total nitrogen (TN) \((P = 0.0001)\). Similar to TC, TN was also lower in the grazed treatment but this difference was only significant in the 2012 (Fig. 2C).

The NH\(_4\) content was significantly lower \((P = 0.0001)\) in grazed than ungrazed soils at May 2011 but was same for both treatments at other sampling times. The NO\(_3\) content was significantly higher \((P = 0.0003)\) in grazed than ungrazed soils at July 2011, but was significantly lower \((P = 0.0074)\) in grazed than ungrazed soils at May 2012 (Fig. 2C and D).

3.3. Microbial functional genes

The amoA gene abundance of AOA and AOB in both grazing treatments varied significantly with time \((P < 0.01\) for grazing treatment \(\times\) time interaction). The AOA-amoA gene abundance of grazed soil was significantly higher than ungrazed soils at May 2011 but was similar for both treatments at other sampling times. The AOA-amoA gene abundance was significantly higher \((P < 0.05)\) in 2011 soil samples than in samples in 2012 (Fig. 3A). The AOB-amoA gene abundance of grazed soil was significantly higher than ungrazed soils at July 2011 \((P = 0.05)\) and September 2011 \((P = 0.001)\) but there was no significant difference between for grazing treatments at other sampling times (Fig. 3B). The AOB-amoA gene abundance in the grazed soils was significantly \((P < 0.05)\) higher in 2011 than in 2012. The AOB-amoA gene abundance in ungrazed soils measured in 2011 was also significantly higher \((P < 0.05)\) at May and July, but lower \((P < 0.05)\) at September, than in the grazed soils.

The grazing treatment did not significantly influence the narG and nosZ gene abundance. However, the narG gene abundance varied with time \((P < 0.001)\) (Fig. 3C).

3.4. N\(_2\)O production potential from nitrification and denitrification

There was no significant effect of grazing treatment on total potential N\(_2\)O production rate \((N_{N_2O} + D_{N_2O})\) or on the potential N\(_2\)O production rate from nitrification \((N_{N_2O})\) or from denitrification \((D_{N_2O})\), respectively (Fig. 4A–C). The potential N\(_2\) production rate \((D_{N_2})\) due to denitrification was significantly higher in ungrazed than grazed soils (Fig. 4D). These potential N\(_2\)O production rates varied significantly with time \((P < 0.0001)\) (Fig. 4A–D).

The contribution of \(N_{N_2O}\) to total potential N\(_2\)O production rate varied from 47.3% to 63.2%. In both years, the \(N_{N_2O}\) was higher than \(D_{N_2O}\) in May and July, but lower in September (Table 2).

3.5. Correlations between the abundance of microbial functional genes and potential N\(_2\)O production rates

The potential of N\(_2\)O production from nitrification \((N_{N_2O})\) showed a significant positive correlation with the abundance of AOA-amoA gene \((R^2 = 0.4653; P < 0.001)\) or with the abundance of AOB-amoA gene \((R^2 = 0.4047; P < 0.001)\) (Fig. 5A and B). The potential of N\(_2\)O and N\(_2\) production from denitrification \((D_{N_2O} + D_{N_2})\) showed a significant positive correlation with the narG gene abundance \((P < 0.001)\) (Fig. 5C). No significant correlation was detected between \(D_{N_2}\) and the abundance of nosZ gene.

3.6. Factors controlling nitrification and denitrification processes and nitrifying and denitrifying microbial communities in the soils

Path analyses indicated that the conceptual models for \(N_{N_2O}\), and for \(D_{N_2O}\) and \(D_{N_2}\) (Fig. 6A and C) fit the observed data \((N_{N_2O}\) full model \(\chi^2 = 5.886, d.f. = 5, P = 0.319; D_{N_2}\) full model \(\chi^2 = 17.591,\)
d.f. = 10, $P = 0.130$). After we removed non-significant paths and tested model fit to observed data again, the simplified final models also fitted well to the data ($N_{N,O}$: $\chi^2 = 12.084$, d.f. = 9, $P = 0.209$; $D_{N,O}$: $\chi^2 = 12.501$, d.f. = 8, $P = 0.109$) (Fig. 6B and D). The first principal component of a PCA on all the four soil variables (SM, ST, TC and TN) explained 68.2% of the total variances, suggesting it a good descriptor of “soil conditions”. Using this aggregated variable “soil conditions” to replace the SM, ST, TC and TN in the conceptual models (Fig. 6A and C), the simplified final models also fitted well to the data ($N_{N,O}$: $\chi^2 = 5.16$, d.f. = 3, $P = 0.160$; $D_{N,O}$: $\chi^2 = 15.79$, d.f. = 12, $P = 0.201$) (Fig. 6E and F).

The final model with all soil variables separately modeled (in Fig. 6C) explained 79% of variation in the $N_{N,O}$ ($P < 0.0001$); and the final model with soil variables aggregated as “soil conditions” (Fig. 6E) explained 55% of variation in the $N_{N,O}$ ($P < 0.0001$). In both final models, the abundance of AOA-$amoA$ and AOB-$amoA$ genes was the direct explaining factors (Fig. 6C and E). The abundances of AOA-$amoA$ and AOB-$amoA$ genes were explained by the NH_4^+ content, and, for AOB-$amoA$ genes only, also by soil moisture. The abundance of AOA-$amoA$ was the most important controlling factor for $N_{N,O}$ followed by the abundance of AOB-$amoA$ (Fig. 6C and E), same as indicated by Fig. 5. Soil moisture had significant correlations with most of variables and influenced $N_{N,O}$ via its effects on soil total C, total N, NH_4^+ and abundance of amoA genes (Fig. 6C).

![Fig. 2](image_url)

Fig. 2. Gravimetric soil moisture content (A), total carbon (TC) (B), total nitrogen (TN) (C), NH_4^+ (D) and NO_3^- (E) content under in the *Lyrurus chinensis* grassland. Treatment means ungrazed (UG) and grazed (G); time means different sampling month in 2011-2012. Bars are means ± 1 sem. Values followed by a different letter are significantly different within each sampling date ($P < 0.05$). No significant grazing × time interaction was detected for TC, so the dashed bars (>) in (B) represent the mean TC at different time, with insets showing the difference grazed and ungrazed soils.

![Fig. 3](image_url)

Fig. 3. Soil AOA gene (A), AOB gene (B) and narG gene (C) copy numbers in grassland soils. Treatment means ungrazed (UG) and grazed (G); time means different sampling month in 2011-2012. Bars are means ± 1 sem. Values followed by a different letter are significantly different within each sampling date ($P < 0.05$). No significant grazing effects or grazing × time interaction effects were detected for narG gene, so the bars (>) in (C) represent the mean values for narG in different time in both grazed and ungrazed soils.
Soils. Treatment means ungrazed (UG) grazing effects or grazing letter are significant. Soil moisture was the only factor that explained the variation in the most important factor affecting DN2O and DN2 directly and affecting DN2 indirectly via affecting soil total C and NO3 content and soil moisture sampling month in 2011 production.

76.24% of variation in the DN2 (\(\log(\text{A}\text{OA}\text{O}_2)\)) was the dominant process of N2O production from these grazed pastures (Fig. 6F). Soil moisture is the most important factor affecting DN2O and DN2 directly and affecting DN2 indirectly via affecting soil total C and NO3 (Fig. 6D). Soil moisture was the only factor that explained the variation in NN2O, DN2O, and TN2O production rates over the two-year experimental period (Figs. 3 and 4). This result is different from that obtained in most studies on grazed pastures, such as that in New Zealand (Menner et al., 2005) and Europe (Chroakova et al., 2009). Denitrification is the dominant process of N2O production from these grazed pastures.

Table 2

The contribution of nitrification (\(\text{NH}_4\text{O}_3\)) and denitrification (\(\text{DN}_2\text{O}_3\)) to total N2O production.

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_4\text{O}_3)</td>
<td>May Jul Sep</td>
<td>May Jul Sep</td>
</tr>
<tr>
<td></td>
<td>55.1 ± 9.7</td>
<td>50.8 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>62.3 ± 3.4</td>
<td>63.2 ± 7.4</td>
</tr>
<tr>
<td>(\text{DN}_2\text{O}_3)</td>
<td>May Jul Sep</td>
<td>May Jul Sep</td>
</tr>
<tr>
<td></td>
<td>44.9 ± 9.7</td>
<td>49.2 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>37.7 ± 3.4</td>
<td>36.8 ± 7.4</td>
</tr>
<tr>
<td></td>
<td>47.4 ± 5.8</td>
<td>52.6 ± 5.8</td>
</tr>
</tbody>
</table>

Fig. 4. The production potential of \(\text{NH}_4\text{O}_3\) (A), \(\text{DN}_2\text{O}_3\) (B), TN2O (C) and DN2 (D) in grassland soils. Treatment means ungrazed (UG) and grazed (G). Time means different sampling month in 2011–2012. Bars are means ± 1 sem. Values followed by a different letter are significantly different within each sampling date (\(P < 0.05\)). No significant grazing effects or grazing \(\times\) time interaction effects were detected for \(\text{NH}_4\text{O}_3\) (A), \(\text{DN}_2\text{O}_3\) (B) and TN2O (C), so the bars (j) in (A–C) represent the mean values for these values in different time in both grazed and ungrazed soils.

The abundance of \(\text{n}ar\text{G}\), total C, NO3 content and soil moisture explained 87% of variation in the DN2 (\(P < 0.0001\)) in Fig. 6D and 76.24% of variation in the DN2 (\(P < 0.0001\)) in Fig. 6F. Soil moisture is the most important factor affecting DN2O and DN2 directly and affecting DN2 indirectly via affecting soil total C and NO3 (Fig. 6D). Soil moisture was the only factor that explained the variation in DN2O. Interestingly, abundance of \(\text{nosZ}\) genes had no effect on DN2 (\(P > 0.05\)).

4. Discussion

4.1. Grazing effects on the potential N2O production rate in meadow-steppe grassland

Many studies have shown that grazing affects soil nitrification and denitrification through affecting the abundance of microbial functional genes (Chroakova et al., 2009; Di et al., 2009, 2010); while in our study, there were no significant grazing effects on the abundance of microbial functional genes or on the potential N2O production in grassland soils. All data were log-transformed before performing regression analysis. \(R^2\) are the coefficients of determination.
under humid climate conditions (de Klein and Van Logtestijn, 1994; Wragge et al., 2001); the grazing enhancement of N₂O production on these pastures is primarily associated with the enhancement of N and C cycling through animal excreta deposition and with the anaerobic conditions created by animal treading (Saggar et al., 2004, 2007a,b; Oenema et al., 2007; Keil et al., 2011). Our result is also different from those obtained from the semiarid grasslands where N₂O is predominantly produced via nitrification, and where grazing-reduced N₂O emissions have been reported to be related to the reduction in soil moisture (Phetteplace et al., 2001; Wang et al., 2006; Xu et al., 2008). Wang et al. (2006) reported a reduction in N₂O emission from semiarid typical-steppe grassland in Inner Mongolia, and related the reduction with the observed lower soil moisture, NO₃ and organic N content under grazing. The soil moisture observed in the meadow-steppe grassland in this study (Fig. 2A) is much lower than that in moist temperate pastures reported by Hyde et al. (2006) and Luo et al. (2008), but is higher than that in most of the semiarid grasslands, such as that reported by Phetteplace et al. (2001) and Xu et al. (2008). Our measurements show a grazing-induced reduction in soil moisture, and soil total C and N content (Fig. 2A), but both the abundance of nitrifying and denitrifying microbial genes and the N,K,O₃ and D,N,O showed no significant difference between the grazed and ungrazed soils.

This lack of significant difference between grazing treatments might be simply due to the fact that grazing induced changes in soil substrate (soil labile nitrogen and carbon) and environment were not great enough to lead to a detectable difference in the abundance and activities of functional microbes. The compensation between the positive effects of grazing on N₉,K,O₃ + D,N,O through stimulating N cycling rate and the negative effects through reducing soil moisture in this semiarid environment may be attributable to the observed insignificant difference between grazed and un-grazed soils in the abundance and activities of microbial groups. The greater litter accumulation, higher soil NH₄⁺ content but lower AOB gene abundance in ungrazed than grazed soils, indicate a slow N cycling rate in ungrazed than grazed soils. The interaction between soil bulk density and soil moisture may also attributable to the insignificant difference in the abundance and activities of functional microbes. The soil bulk density is higher in grazed (1.27 g cm⁻³) than un-grazed plots (1.13 g cm⁻³), thus a significantly lower volumetric soil moisture content in grazed than in ungrazed soils does not necessarily mean a better aeration conditions; in fact, the water-filled pore space (WFPS) was not significantly different (P = 0.247) between grazed (17.7%) and ungrazed (21.0%) soils, though volumetric soil moisture content showed significant difference (Fig. 2A). That is, similar aeration conditions in the grazed and ungrazed soils may reduce the effects of the difference described in volumetric soil moisture content, and attribute to the observed similarity in the abundance of microbial functional genes and their activities (Figs. 3 and 4). Furthermore, during the two experimental years (2011 and 2012), the study area received a much lower precipitation compared to the long-term average (Fig. 1), so that soil moisture content was more similar to those in the soil of a typical steppe which is distributed in a region dryer than that of meadow steppe on a climatic gradient in Inner Mongolia. If the data measured from the soil samples at July 2011, the extremely wet soil following continuous rainy days (Fig. 1), were excluded, grazing would appear to decrease the potential N₂O production rates and the abundance of AOA, AOB and narG genes (data not shown). Significantly lower N₂O emission or N₂O production potential rates were reported from the typical grazed steppe grassland soils (Wang et al., 2006; Xu et al., 2008).

This suggests that the grazed soil may have less N₂O production potential than ungrazed due to the reduction in soil moisture; but...
under wet conditions, grazing induced soil moisture reduction may improve the soil aeration and stimulate the N₂O from nitrification (\(N_{N_2O}\)), which might be a larger influence than the inhibition to the N₂O production from denitrification (\(D_{N_2O}\)).

4.2. Dynamics of the abundance of microbial functional groups and \(N_2O\) production potential

The potential of N₂O from nitrification and denitrification in grassland soil in the study is much lower than those from most of other grassland soils reported (e.g., Luo et al., 1999; Rudaz et al., 1999). The contribution of nitrification to total N₂O production potential (\(N_{N_2O}\)) is slightly higher than that from denitrification in the studied grassland, being 47–63% in the six measurements. This contribution is lower than that reported in the typical steppe grassland (average annual 53%) on Tibetan plateau (Du et al., 2011). This change in \(N_{N_2O}\) is most likely related with the effect of soil moisture: \(N_{N_2O}\) decreases with soil moisture increase. Soil moisture in studied meadow-steppe grassland is higher than that of typical steppe (Xu et al., 2008) but lower than that of alpine meadow (Rui et al., 2011). The abundance of nitrifying and denitrifying functional genes and their activities varied significantly across the seasons. The abundance of AOA, AOB, narG genes and the N₂O production potential was much higher in May and July in 2011 than in other sampling time (Figs. 3 and 4); this pattern is also shown by the soil moisture (Fig. 2A). However, the abundance of AOA and narG genes was very high in September 2011 (Fig. 3A and C), but the \(N_{N_2O}\) and \(D_{N_2O}\) were lower (Fig. 4), than in other sampling time, which is most likely associated with the lower soil moisture and air temperature in the month (Figs. 1 and 2A). Our results support the results of Petersen et al. (2012) that the abundance of microbial functional genes does not respond quickly to environmental change.

4.3. The predictive power of the abundance of functional microbial groups to \(N_2O\) production potentials

Recent studies on the relationship between the abundance of functional microbial groups and nitrification and denitrification rates have not showed a consistent trend. Our results indicated that the abundances of microbial amoA (AOA and AOB) and narG genes are good indicators for the N₂O production potential through nitrification and denitrification on the studied grassland soils (Figs. 5 and 6). However these results are different from many other recent studies that suggest no correlation between these two parts (Ma et al., 2008; Miller et al., 2008; Baudoin et al., 2009; Djigal et al., 2010). One common feature in these studies was that they sampled soil only at one time and used one incubation experiment (Ma et al., 2008; Miller et al., 2008; Song et al., 2010), or the experimental field was a cultivated land with large environment change and disturbance (Baudoin et al., 2009; Attard et al., 2011). Our results are in agreement with those reported from other grassland ecosystems (Cuhel et al., 2010; Di et al., 2010; Chroakova et al., 2009) in which soil was not strongly interfered with by human activities.

The positive correlation between the abundance of functional microbial genes and the N₂O production potential in our study is from repeated soil sampling, over two plant growing seasons, from the soils either under protection from grazing or under sustained grazing with a moderate stocking intensity. Our data and that of Di et al. (2010) and Chroakova et al. (2009) suggest that the changes in the abundance of functional microbial groups and in the N₂O production potential are correlated across seasons. Our result is not in conflict with that of Miller et al. (2008) and Song et al. (2010) who reported no significant correlation between the abundance of functional microbial groups and N₂O production potentials. When we excluded the effects of sampling time from our dataset, the correlation between \(N_{N_2O}\) and the abundance of amoA gene or between \(N_{N_2O}\) and the abundance of narG gene in each sampling were not significant (\(P > 0.05\)). That is, our data shows that the changes in the abundance of functional microbial groups and in the N₂O production potential are synchronized across seasons, but the soil difference induced by animal grazing, was not big enough to induce a significant and consistent difference in the abundance of microbial functional genes and in the \(N_{N_2O}\) or \(D_{N_2O}\).

Gene copy numbers will not likely provide information on real-time process rates since such rates are dependent on environmental conditions. Fluctuations in environmental conditions can induce a significant difference in real-time process rates, but not necessarily affect gene abundance. Our results suggest that the abundance of microbial functional genes are likely to be robust indicators for predicting effects on process rates of the long-term environmental changes in grassland ecosystem.

We found no obvious relationship between the abundance of nosZ genes and N₂ production potential (\(R^2 = 0.0006, P > 0.05\)); and soil moisture, total C and total N did not affect the abundance of nosZ genes (Figs. 6D and F). This result was in agreement with the results of Wellenstein et al. (2006) and Chroakova et al. (2009), and supports their statement that nosZ gene seems to be more cosmopolitan in various soils and less affected by environmental factors than the other genes.

5. Conclusions

Our study showed that soil moisture is the most important factor controlling the N₂O emission potential in the meadow-steppe grassland. The abundances of amoA and narG genes are good predictive variables for the potential biogeochemical rates. The effects of grazing are masked or adjusted by soil moisture conditions. The grassland soils protected from animal grazing or under a moderate grazing for five years did not show a significant difference in potential N₂O emissions. Our results suggest that grazing induced grassland degradation is not necessarily associated with a reduction in N₂O emissions as reported in other extensively managed grasslands in a more arid environment.

Acknowledgement

This research was funded by the Chinese Academy of Sciences, as part of projects “The CH₄ and N₂O emissions in temperate meadow grassland (No. XDA05020401)’’ and “Strategic priority research program for climate change: carbon budget and relevant issues (XDA01020304)”. Zhong Lei’s work was supported by a PhD scholarship from Livestock Emission and Abatement Network (LEARN) administered by the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC). The authors thank Dr Dongwen Luo for statistical analysis.

References

de Kleijn, C.M., Van Logtestijn, R., 1994. Denitrification and N₂O emission from urine-

Henry, S., Bru, D., Stres, B., Hallet, S., Philippot, L., 2009. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abun-

IPCC, 2007. Climate change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Cambridge University Press.

